On Codes having Dual Distance d'>=k
نویسنده
چکیده
Keywords: Linear codes MDS-codes AMS Subject classiication (1985) 94B05 Summary: We give several bounds for the length, dimension or minimum distance of linear block codes whose dimension equals the minimum distance of their dual codes. Zusammenfassung: Wir geben verschiedene Schranken f ur die L ange, die Dimension und den Minimalabstand linearer Blockcodes, deren Dimension gleich dem Mini-malabstand ihrer dualen Codes ist, an.
منابع مشابه
Classification and nonexistence results for linear codes with prescribed minimum distances
Starting from a linear [n, k, d]q code with dual distance d ⊥, we may construct an [n−d⊥, k−d⊥+1,≥ d]q code with dual distance at least l d⊥ q m using construction Y1. The inverse construction gives a rule for the classification of all [n, k, d]q codes with dual distance d ⊥ by adding d⊥ further columns to the parity check matrices of the smaller codes. Isomorph rejection is applied to guarante...
متن کاملConstruction of Linear Codes Having Prescribed Primal-dual Minimum Distance with Applications in Cryptography
A method is given for the construction of linear codes with prescribed minimum distance and also prescribed minimum distance of the dual code. This works for codes over arbitrary finite fields. In the case of binary codes Matsumoto et al. showed how such codes can be used to construct cryptographic Boolean functions. This new method allows to compute new bounds on the size of such codes, extend...
متن کاملCodes of Small Defect
The parameters of a linear code C over GF(q) are given by [n, k, d], where n denotes the length, k the dimension and d the minimum distance of C . The code C is called MDS, or maximum distance separable, if the minimum distance d meets the Singleton bound, i.e. d = n−k+1. Unfortunately, the parameters of an MDS code are severely limited by the size of the field. Thus we look for codes which hav...
متن کاملUse of matroid theory to construct a class of good binary linear codes
It is still an open challenge in coding theory how to design a systematic linear (n, k)− code C over GF(2) with maximal minimum distance d. In this study, based on matroid theory (MT), a limited class of good systematic binary linear codes (n, k, d ) is constructed, where n = 2 1 + · · · + 2 δ and d = 2 − 2 + · · · + 2 δ− 1 for k≥ 4, 1≤ δ < k. These codes are well known as special cases of code...
متن کاملParallelogram-free distance-regular graphs having completely regular strongly regular subgraphs
Let = (X,R) be a distance-regular graph of diameter d . A parallelogram of length i is a 4-tuple xyzw consisting of vertices of such that ∂(x, y)= ∂(z,w)= 1, ∂(x, z)= i, and ∂(x,w)= ∂(y,w)= ∂(y, z)= i− 1. A subset Y of X is said to be a completely regular code if the numbers πi,j = | j (x)∩ Y | (i, j ∈ {0,1, . . . , d}) depend only on i = ∂(x,Y ) and j . A subset Y of X is said to be strongly c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Elektronische Informationsverarbeitung und Kybernetik
دوره 27 شماره
صفحات -
تاریخ انتشار 1991